ATP USER INSTRUCTIONS

User Manual

- **1. Principle of Operation**
- 2. Preparation for Use
- **3. Basic Operation**
- **4.Clock Setting**
- **5. Result Thresholds**
- 6. Sample Measurements and Test Results
- 7. Transferring the Test Results to PC
- 8. Instrument Beeps
- 9. Faults
- **10. Technical Parameters**

ATP bioluminescence detecting system

1. Principle of Operation

ATP bioluminescence detector converts invisible ATP concentration to visible light output by bioluminescent chemistry technology, to display a quantitative result of microbial population indirectly. The result is a number from 0 to 9999 in Relative Light Units(RLUs). RLUs are not a kind of tangible unit of light measurement, but they can provide a real method to the ATP bioluminescent test. In this application, 1 RLU is roughly equivalent to 1fmol of ATP.

RLU value is compared with the result threshold set by user to offer an overall result, which is pass⁽¹⁾, caution⁽¹⁾ or failed⁽²⁾

In order to ensure that you can get timely and accurate testing result by ATP bioluminescence detecting system, please note the following:

Before you begin, please read this user's manual carefully.

ATP bioluminescence detector should be auxiliarily used with the ATP sampling swab.

2. Preparation for Use

Before you begin, please ensure you have read this user's manual carefully and understood the system composition error method of application of this instrument. Please confirm the integrity of the product you bought according to the elements noted in the user's manual.

mainfram

front and back

AA batteries or rechargeable batteries

Data line

Elements of ATP bioluminescence detecting system

Liquid Crystal Display: display test procedure and result

Unit lid: kill the light

Lable: display the instrument type and serial number

Battery compartment: fit two AA batteries

Up button: check last test result, and menu selection

Down button: check next test result, and menu selection

Start button: start test

Threshold set button: set threshold

Time set button: set time

Power on/off button: Power on/off the instrument

Special function button: Special function, such as enter delete interface

Opening the lid reveals the following internal features:

Swab pocket: insert ATP sampling swab Data interface: transfer the data to PC by data cable.

Instrument indication

The numbers displayed on the top of LCD indicate measurement and time, and pressing the T button can switch the functions.

The testing code is a three-digit number from 001 to 999. The number "1" after testing code refers to group one, and "2" refers to group two. For example, "048 2" can be regarded as the 1048th sample.

Fitting the batteries

The instrument is designed to operat from 2 AA batteries. The batteries are fitted by openning the battery compartment cover on the back of the instrument, and inserting two batteries with the

positive end towards top of the instrument. After fitting the batteries, the instrument powers on automaticly, and enters into clock setting mode. Date and time setting is discribed in Section 4.

Caution: be careful not to swap the batteries' poles over,

for this may destroy the electronic system of instrument

Tip: for better results, please use the batteries with good quality and replace them as soon as they become low.

3. Basic operation

3.1 Power on the instrument

Press the 🕑 button, and the instrument will beep once and display the startup picture. Afterwards, the instrument will perform an internal self-calibration check programme for 30 seconds.

Tip: If the clock is not set, the instrument will enter the time and date set-up mode firstly (see section 4) and then perform its self-calibration when the clock is set.

3.2 Internal self-calibration

When the instrument is turned on (see section 3.1), it performs an internal self-calibration check, with the display counting down from 30 to 0 seconds:

Tip:During self-calibration, there must be no ATP Swab in the instrument and the lid must remain closed. If the licon is flashing, close the lid.

The instrument will automatically perform the self-calibration routine (the flashing CAL icon) under the following circumstances;

a) When the instrument is in continuous operation for a prolonged period of time (typically >30 minutes), and

b) The instrument is used in an environment where the temperature changes significantly (typically >5℃).

If the E1 error code was showed in self-calibration, it means the the temperature is higher than operating temperature range, and it may caused by the reasons as followed: a) the operating temperature is higher than normal range,

and

b) The instrument is stored at the temperature exceeding

normal range: to make the instrument adopt to normal

temperature range, and

c) the instrument is damaged or in fault.

3.3 Ready for use:

Once the instrument has successfully performed its

self-calibration, it is ready to perform a measurement:

The detection procedure is discribed in Section 6.1

3.4 Power off the instrument

Press the button. The instrument will beep once and the display will go blank.

TIP: the Dutton is disabled while the instrument is

performing a mesurement.

3.5 Power Saving Standby Mode

If the unit is turned on and has stood by for more than 10

min(on operation for more than 10 min), it will automatically enter a

power saving standby mode.

To turn the unit back on, please press the ⁽¹⁾ button **3.6 Low Battery Indicator**

The
icon indicates the state of the batteries

Not visible	High
Visible	Low, replace soon
Flashing	Flat, replace now

When the batteries are flat, the unit will flash the 📼 icon, beep

three times, and then automatically turn off.

TIP: if the batteries are too flat, the unit will not power on. Store the instrument in a cool dry place when not in use, as elevated temperatures will shorten the battery life.

4. Clock Setting

With the unit turned on and ready for a measurement, press button to display the current date and time.

To change the time and date, press the B button. Then use the D and D buttons to change the flashing value, and the B button to accept each new value in turn.

TIP: press 🛞 button at any point will cancel this set-up mode, leaving the time and date unchanged.

When batteries are fitted firstly or replaced, the instrument powers on automaticly, and enters into clock set-up mode. Once the clock is set, the unit will continue with its internal self-calibration.

If the time is set incorrectly, the instrument will beep once and display wrong time after the \bigcirc button is pressed, and return to clock set-up mode.

5. Result Thresholds

The instrument can store up to 100 thresholds (0 to 99),each of which defines a pair of upper and lower thresholds for the

measurement result.

Note: the different thresholds indicate specific sanitary requirement of different testing sample. For the details how to choose the thresholds, please contact your local hygiene and epidemic prevention department, or set your own thresholds.

5.1 Changing the Thresholds Number

With the instrument turned on and ready for a measurement, the thresholds number can be changed by pressing the S button, and use the A and A buttons to change the flashing thresholds number, then press the S button to accept the new value. TIP:Pressing the S button again will exit this set-up mode, leaving the thresholds number unchanged.

5.2 Changing the Thresholds Range

Press the S button, use the O and O buttons to select the required thresholds number, and then press the S button. Afterwards, use the O and O buttons to first change the value of the upper threshold followed by the O button; and then to change the value of the lower threshold followed by the O button to store the new values:

TIP: Pressing the \circledast button at any point will exit this set-up mode, leaving both the thresholds number and thresholds value unchanged.

6. Sample Measurements and Test Results

6.1 Sample Measurement

With the instrument turned on and internal calibration done,

thepreparation of the new measurement is compeled.

the thresholds number, the value of upper and lower threshold and test data number(68 indicates there are 68 test results saving in the instrument)

TIP: When the stored test results take up more than 95% of the memory, the MEM icon will flash. When the memory is completely full, no more tests can be performed until the memory has been deleted or uploaded to the PC(see to section 6.3 and 7)

To perform a sample measurement, follow the steps below:

1.Activate the ATP swab2.Ensure that the outside of the swab is clean and dry3.Open the lid, insert the swab into the instrument, andclose the lid.

4.Press the button and wait 15 seconds for the result to be displayed While the measurement is being performed, the display shows the new test number while the timer counts down from 15 to 0 seconds:

TIP: For consistent results, always keep the unit upright and steady while it is performing a measurement to ensure that the liquid in the ATP swab device is at the bottom of the tube.

When the measurement is complete, the new test reading and pass/caution/fail result (see section 5) are displayed. When the \bigcirc icon flashes, take out the swab, and press the \bigcirc button, and the instrument will get ready to the next measurement.

Test result≤	lower threshold		OK
Test result>	lower threshold≤	upper threshold	0
Test result>	upper threshold		0

TIP: After measurement, make sure to remove the swab to prevent the liquid leakage of swab and damage the instrument

6.2 Viewing Stored Test Results

With the unit ready to perform a reading, the previous stored test results can be viewed by pressing the 1 and 2 buttons:

The display then shows the latest test result, with the MEMicon lit and the test number flashing. Press the ① button to scroll backwards through the stored test results and the ① button to scroll forwards.

Press the \bigcirc button to view the time and date that the test was performed.

To exit the results review mode, please press the 🞯

button.

6.3 Deleting the Results Memory

The results memory can be completely deleted by entering the

results review mode (see section 6.2 above) and then pressing and holding down the 🛞 button for more than 2 seconds.

The display then shows the total number of results that will be deleted, with the DELETE? Icon flashing.

The delete function is completed by pressing and holding down the \bigcirc button for more than 2 seconds, or can cancelled by pressing any other button.

7. Transferring the Test Results to PC

CD-ROM data processing software which is randomly equipped

can be used to upload the stored results to PC.

7.1 Install transmission procedure software

Insert CD into PC, then install according to installation tips.

Tips: If installation program can not appear automatically,

please open CD-ROM

folder from "my computer", then manually apply for installation.

After installing, please press transmission shortcut key for

transferring.

7.2 Data transmission function

Run transfer function by "start" button, a dialogue box will be opened as follows:

rn –	1 TESTNO	2Doto	38.000	AProg	ERosult	GRUI	71.00
TD	TIESTRO	ZDate	JNOW	41108	SVezart	OVED	TL0
							>
lease f	ollow the WI-						>
C Please fr [1]Cor cable [2]Ope begin [3]2 data i	ollow the WI — unect the COM of en the detector the data inpor Open the detec inport	of computer - and swith -t -tor and swi	and RS232 o: Serial, pre: th Serial, j	f the detect ss the start press the st	or with Serie button to art button to	l) begin the	>
Please f [1]Cor cable [2]Ope begin [3]2 data i	ollow the WI — unect the COM of en the detector the data inpor Open the detec inport oad options —	of computer • and swith •t otor and swi	and RS232 of Serial, pre- th Serial, j	f the detect ss the start press the st	or with Seris button to art button to	l) begin the	>
lease f [1]Cor cable [2]Ope begin [3]2 data i serial	ollow the WI — anect the COM of en the detector the data inpor Open the detect inport oad options — . port COMI	of computer r and swith rt otor and swi	and RS232 o: Serial, pre: th Serial, p	f the detect ss the start press the st	or with Seris button to art button to	l) begin the	>
Please f [1]Cor cable [2]Ope begin [3]2 data i Data upl serial	ollow the WI — unect the COM of en the detector the data inpor Open the detec inport oad options — Port COM1	of computer • and swith •t •tor and swi	and RS232 o: Serial, pre: th Serial, j	f the detect ss the start press the st	or with Seria button to art button to	l) begin the	>
Please f [1]Cor cable [2]Ope begin [3]2 data i [3]2 data upl. serial retaine	ollow the WI — mect the COM of en the detector the data inpor Open the detec nport oad options — . port COM1 d mode Notepa	of computer and swith tor and swi d[.txt]	and RS232 o: Serial, pre: th Serial, j	f the detect ss the start press the st	or with Serie button to art button to	l begin the	>

Connect the detector to a USB interface on the coomputer using

USB cable (provided by the unit);

- (1) Connect one joint of cable to USB Mini interface;
- (2) Connect the other joint of cable to USB port on the computer;

Next, choose appropriate connection port from alternative menus:

	Data upload options	
	serial port COM1	
	retained mode COM2 COM3 COM4	
	Start Car	ncel Save
1	Then, choose a file store type, an Exc	cel data document or a
blan	k text document:	
	-Data upload options	
	retained mode [Notepad[. txt]	
	Excel[.xls] Notepad[.txt]	
	Start Ca	ncel Save

10

Tips: Excel document may be safer, because its data can not be modified, so you must install Microsoft Excel on the same computer, thereby saving the results as Excel form.

The next step is naming the report. The document name must be exclusive, and the used document name can not be reused.

In the end, press "O" button to power on the instrument, and then select the start button in PC programme to start the tranfer after self-inspection.

Warning: Excel is forbidden during the transfer and saving of data, for the possibility of destroying data. After transfer done, take off the data line, and push back the black rubber lid to the in situ, and the unit lid can be closed tightly.

7.4 Document type of data results

The transmissive detection results are saved on Excel document or text document (see chapter 7.2). Document forms are same:

	Unit	Test	Date	Time	Limit	Result	RL	Low	Upp	Note	
	No.	ing			No		U	er	er		
		No.						limit	limit		1
	018	1	6/05/07	09: 02	1	Pass	34	100	200		支援国法
	8							1			
-	018	2	6/05/07	09: 08		Pass	46	100	200		
	8										
	-018-	3	6/05/07	09: 12	2	Guard	198	150 ~	400	Secondary	
	8		sec.		-				Tel	cleaning	
	0188	4	6/05/07	09: 27	2	Pass	87	150	400		
	0188	5	6/05/07	16: 22	1	No pass	269	100	200	Focal	•
							×	Sol		monitoring	
	0188	6	6/05/07	16: 24	2	Pass	126	150	400		

The significance of the name of data region is as follows:

Unit No. —Unit serial number(see the labels

behind the instrument)

Testing serial number — Testing No. Date — Date of operation

ate — Date of operation detection

Limit No. —Limit serial number for detection

RLU —RLUs reading detection result

Lower limit —Low (1) set limit value

Upper limit —Upper (↑) set limit value

Note —Spare area

If necessary, users can add comments of each result on the

spare area<mark>.</mark>

8. Instrument beeps

During normal use, the unit emits a variety of different beeping sounds:

9. Faults

In case of a fault, it is generally caused by battery; if the detector can not be turned on or turned off, or unit turns off unexpectedly, they are mainly caused by power off or loose battery; if there is a detector whose battery is in good condition, but it can not work normally, please contact with manufacturer for solution.

The followings are the typical cases and their possible causes.

- $\sqrt{}$ represent users can solve the problems by themselves
- represent the problems may be solved by technicians,

please

contact with manufacturer for solution.

Cases

Measurement reading always shows zero RLU, or is much lower or high than expected

device

Fault causes

Unit turns off unexpectedly

Keypad button has no effect when pressed

 \checkmark Unit not used for more than 10 minutes and automatically turns off into standby mode

 $\sqrt{}$ Some buttons only work when selecting particular unit functions

× Keypad or unit damaged or faulty

 $\sqrt{1}$ Incorrect use of $\sqrt{1}$ Ca

√ CariScreen Swab

√ CariScreen Swab devices are out-of- date

- \checkmark Unit being used in an unstable environment turn off unit and then back on again
- $\sqrt{\text{Protective pocket dirty or severely scratched}}$
- × Unit damaged or faulty

USB interface does not appear working condition

 $\sqrt{}$ inserted unit is incorrect

- *PC serial interface or system software error
- VPC software installation error or select error
- ×wire or interface damaged
- × Unit damaged or faulty

10. Technical Parameters

Detection precision:	2X10-16r	nol ATP		
Lower limit of detection:	≤1.0 CFU	J/ml	325	2
Detection range:	0~9999 R	LU (re	lative light un	it)
Coliforms:	≥1-106CFU			
Detection time:	15s			
Detection interference:	±5% or ±5	RLUs		
Background value:	≤2RLU			
Detection mode:	RLU or colif	orms sc	reening	
Number of settable limit:	more than 1	00		
Storage size:	more than 2	2000 det	ection results	
USB interface: the rest	ults can be trai	nsferred	to PC compu	ter
Instrument dimensions (W×F	I×D):	192mn	×87mm×34m	ım
Instrument weight (Battery i	ncluded):		265 g	
Range of operating temperat	ure:		5°C-40°C	
Relative humidity range:			20-85 %	
Battery:		А	A battery	
Resting state (20℃):		6	6 months	

Remark:Limited value

After cleaning to the standards required for normal operation, the surface is inspected and the results recorded. The same wiping technique should be used for testing, and five different times should be selected for testing at the same location. This shows the standards that can be achieved after regular cleaning.

key point		the first	the	The	The	The fifth
		time	second	third	forth	time
			time	time	time	
1	Pollution	524	857	489	763	615
2	clean	10	15	8	19	10
3	Strict	4	3	0	2	1
	clean					

1. The limit values of the key points are as follows:

After the reference data of the key points is collected, the following operations can be used to obtain the RLU standards for the passing, warning, and failure of the routine inspection work:

1. By calculating the RLU average for cleaning or rigorous cleaning, this value is your standard limit.

For example: Clean = (10 + 15 + 8 + 19 + 10) / 5 = 12.4 ~

the

12

2. It is obtained by multiplying the pass value by 2 b

limit value.

For example: not passed = $12.4 \times 2 = 24.8 \approx 25$

3. Alert The limit value is between passing and not passing the limit value. Some users choose not to set a warning value, while others set the non-limit value to be higher than the limit value. Example of setting a warning value: Pass standard = 12 Caution Standard = 13 to 25 Fail standard (===26)

Third, the recommended limit value setting

When the instrument is first used, we have a set of recommended universal limits. These limit values are determined according to GB/T4789.2-2003 "Food Hygiene Microbiological Test - Total Number of Colonies", which is determined by SAS statistical software analysis to determine the total number of colonies and the regression equation of the ATP instrument for detecting RLU values.

АТР	Reference limit			
	Pass	the warning	not pass	
RLU	<15	15-29	>30	

2.Reference limit

Deli counter

		Material	pass	fail
335	Weighing	stainless steel	8	30
2/	apparatus		and the	200
	Packaging	stainless steel	8	30
	material -			
	cheese			
	Cutter - meat	stainless steel	8	30
	Cutter-cheese	stainless steel	8	30
	Preparation	stainless steel	8	30
	Auxiliary tools	stainless steel	8	30

		material	pass	fail	
	Chopping	plastic	-15	30 1	
	board			To ale 2	
5	Preparation	stainless steel	15	30	
/	table		A de	2-2-2	~~
	Salad bowl	plastic	15	30	

Barbecue product counter

	material	pass	Fail
Chicken fork	stainless steel	15	30
Preparation	stainless steel	15	30
table			
Service area	-	15	30
oven	stainless steel	15	30

		material	pass	fall	
	Chopping	plastic	15	30	
200	board				
3/	Preparation		15	30	
	table				
	Working	stainless steel	15		
	surface				
	Auxiliary tools,	stainless steel	15	30	
	such as a ladle				

Sandwich preparation area

	material	pass	fail
Knife	stainless steel	15	30
Working	stainless steel	15	30
surface			
Preparation	plastic	15	30
board			

Raw meat area - meat products

		material	pass	Fail
335	Knife	stainless steel	15	30
2/	Mincer	stainless steel	15	30
	Working	stainless steel	15	30
	surface			
	Weighing	stainless steel	15	30
	apparatus			

Fish

	material	Pass	Fail
Chopping	plastic	30	100
board			
Preparation	stainless steel	15	30
table			
Knife	stainless steel	15	30

		Piz	za		
		material	Pass	Fail	
	Spice pot	stainless steel	15	30	
	Working	stainless steel	15	30	
2/	surface		and all	2-2-2	~
	Preparation	-	15	30	
	table				